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ABSTRACT

In this paper a novel method to reconstruct
the location an the orientation of unexploded ord-
nances (UXO’s) by means of a two stage recon-
struction process is presented. The first stage con-
sists of obtaining a rough reconstruction based on
magnetic field signatures at the earth’s surface,
while in the second stage the results from the first
steage are going to be improved. For the recon-
struction a Gauss-Newton method with analytical
Jacobians is being used.

INTRODUCTION

The four major categories of technologies for
the detection of UXO are magnetometry, infrared
(IR), ground penetrating radar (GPR) and electri-
cal impedance measurement (EIM). Magnetome-
ters (fluxgate or cesium vapor) are the most com-
monly used form of detecting UXO on or below
the surface and can be applied for underwater use.
Magnetometers can only detect UXOs containing
ferrous metal. Metal detectors (making use of eddy
currents) can locate both ferrous and nonferrous
metallic objects and can be adapted for underwater
use, as well; however, conventional metal detec-
tors can only detect UXOs located on or very near
the surface. Infrared has proven effective only in
conducting gross assessments of areas containing
UXOs, but lacks the capability to provide point de-
tection of UXOs. GPR and EIM can collect rough
images of buried metallic and nonmetallic UXO.

GPR effectiveness is severely limited in certain soil
conditions.

Magnetic detection (the method discussed in
this section) is a widely used method for the lo-
cation and identification of unexploded ordnances
(UXO). The presence of ordnances results in mag-
netic anomalies superimposed on the background
geomagnetic field [1].

The current state of the art is to model these
magnetic anomalies by means of a magnetic dipole
( [2], [3], [4], [5]), whose field is superimposed
to the earth magnetic field leading to a fast recon-
struction of the bomb location, but little informa-
tion can be drawn from that model what shape and
orientation of the UXO is concerned.

Sometimes in UXO detection it might be help-
ful to know not only the depth of the object but also
the orientation and size. To perform this type of
reconstruction we may approximate the ordnance
with a prolate spheroid for which we are able to
obtain an analytical solution.

Consider the situation of Fig. 1, where a
spheroid is buried in earth. The location and shape
of the spheroid are given byx0, y0, z0, Θ (the angle
between the semi major axis of the spheroid andz-
axis), φ (angle between axis of the spheroid and
x-axis),b andc. The geomagnetic field is given by
Bx0,By0 andBz0.

The forward problem is to calculate the mag-
netic flux density at the earth’s surface. Then the
spheroidal model is varied until the measurement
data (measured magnetic flux density at the earth’s
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Figure 1: Buried unexploded ordnance approxi-
mated with a prolate spheroid. The location and
shape of the spheroid are given byx0, y0, z0,
Θ (the angle between the semi major axis of the
spheroid andz-axis),φ (angle between axis of the
spheroid andx-axis), b and c. The geomagnetic
field is given byBx0,By0 andBz0.

surface) meet the calculated magnetic flux density
resulting from the spheroidal model.

ANALYTICAL SOLUTION OF THE FOR-
WARD PROBLEM

This problem can be solved best by introducing
elliptical coordinates:

x = a sinh(η) sin(ϑ) cos(ψ)
y = a sinh(η) sin(ϑ) sin(ψ)
z = a cosh(η) cos(ϑ)

, (1)

whereb = a sinh(η), c = a cosh(η), 0 ≤ η ≤ ∞,
0 ≤ ϑ ≤ π and0 ≤ ψ ≤ 2π. ϑ = const. refers to
hyperboloids,η = const. to prolate spheroids and
ψ = const. to meridian planes.

Due to the fact that we do not have a current
density in the domain of interest, allows us to in-
troduce a magnetic scalar potentialVm

∇× �H = 0 ⇒ �H = −∇Vm. (2)

The geomagnetic field is expressed as an intrinsic
magnetic scalar potentialVe

Ve = − 1
µ0

[Bx0x+By0y +Bz0z] +K, (3)

whereK is some constant andµ0 is the permeabil-
ity of vacuum.

The differential equation forVm that has to
be fulfilled can be obtained once again from
Maxwell’s equations

�H = −∇Φm,∇ �B = 0 ⇒ �Φm = 0. (4)

Or in elliptic coordinates

1
a2(sinh2η+sin2ϑ)

{
∂2Φm

∂η2 + coth η ∂Φm

∂η

+∂2Φm

∂ϑ2 + cot ϑ∂Φm

∂ϑ

}
+ 1
a2sinh2η sin2ϑ

∂2Φm

∂ψ2 = 0.

(5)

The general solution for (5) can be obtained by
means of separation of variables

Vm =
∞∑
q=0

∞∑
n=0

{[
α1qnP

n
q (cosh η)

+α2qnQ
n
q (cosh η)

][
α3qnP

n
q (cos ϑ) + α4qnQ

n
q (cos ϑ)

]
[α5qnsin(nψ) + α6qncos(nψ)]} ,

(6)

whereP andQ are Legendre polynomials.
The boundary and interface conditions (be-

tween the ferromagnetic spheroid (region 1) and
earth (region (2)) that have to be fulfilled are

Vm,1 = Vm,2
µ1

∂Vm,1
∂n = µ2

∂Vm,2
∂n

η → ∞ : Vm,2 = Ve,

(7)

wheren is the normal vector.
Due to the fact thatQ(1) → ∞, the terms in

the general solution containingQ(cos ϑ) have to
be eliminated.

Sinceη → ∞ : Vm,2 = Ve we know thatn =
0, 1 becausecos(nψ) andsin(nψ) occur only with
n = 1 in (3).

Additional due to the properties ofP (and com-
parison with (3)) it follows thatq = 0, 1 too.

In the following we assume that in the whole re-
gion 2 permeability of vacuum is valid (µ2 = µ0).

Considering the interface conditions, one fi-
nally ends up with the solution in domain 2 (the
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one in which we are interested in)

Φ2 = K − Bz0a
µ2

cosh(η)cos(ϑ)−
By0a
µ2

sinh(η)sin(ϑ)sin(ψ)−
Bx0a
µ2

sinh(η)sin(ϑ)cos(ψ)+
Bz0asinh(η0) 1

µ2
(µr1−1)Q0

1(cosh(η))cos(ϑ)

µr1Q0
1(cosh(η0))

coth(η0) −Q0′
1 (cosh(η0))sinh(η0)

+

By0acosh(η0)
1

µ2
(µr1−1)Q1

1(cosh(η))sin(ϑ)sin(ψ)

µr1Q1
1(cosh(η0))

tanh(η0) −Q1′
1 (cosh(η0))sinh(η0)

+

Bx0acosh(η0)
1

µ2
(µr1−1)Q1

1(cosh(η))sin(ϑ)cos(ψ)

µr1Q1
1(cosh(η0))

tanh(η0) −Q1′
1 (cosh(η0))sinh(η0)

,

(8)
with

Q0
1(x) = Q1(x) = x

2 ln
(
x+1
x−1

)
− 1

Q10′
= d

dxQ
0
1(x)

Q1
1(x) =

(
x2 − 1

) 1
2 d
dxQ1(x)

Q11′
= d

dxQ
1
1(x)

(9)

µr1 is the relative permeability of the ferromag-
netic UXO andη = η0 denotes the interface be-
tween region 1 and region 2 (i. e. the surface of the
UXO).

In (8) there is still a constantK remaining
which is irrelevant, since we are interested in cal-
culating the magnetic flux density

B′
x = −µ0 (∇V2)x = −µ0

[
1

a2(sinh2(η)+sin2(ϑ))(
a cosh(η)sin(ϑ)cos(ψ)∂V2

∂η +

a sinh(η)cos(ϑ)cos(ψ)∂V2
∂ϑ

)−
1

a2sinh2(η)sin2(ϑ)a sinh(η)sin(ϑ)sin(ψ)∂V2
∂ψ

]
B′
y = −µ0 (∇V2)y = −µ0

[
1

a2(sinh2(η)+sin2(ϑ))(
a cosh(η)sin(ϑ)sin(ψ)∂V2

∂η +

asinh(η)cos(ϑ)sin(ψ)∂V2
∂ϑ

)
+

1
a2sinh2(η)sin2(ϑ)a sinh(η)sin(ϑ)cos(ψ)∂V2

∂ψ

]
B′
z = −µ0 (∇V2)z = −µ0

[
1

a2(sinh2(η)+sin2(ϑ))(
a sinh(η)cos(ϑ)∂V2

∂η − acosh(η)sin(ϑ)∂V2
∂ϑ

)]
(10)

For calculating the derivatives∂V2
∂η , ∂V2

∂ϑ and ∂V2
∂ψ

the following abbreviations are used

C10 =
Bz0 a sinh(η0)µr1−1

µ0

µr1Q0
1(cosh(η0))
coth(η0)

−Q0′
1 (cosh(η0))sinh(η0)

(11)

and

C̃11 =
�B0 a cosh(η0)µr1−1

µ0

µr1Q1
1(cosh(η0))

tanh(η0) −Q1′
1 (cosh(η0))sinh(η0)

,

(12)
Then (8) simplifies to

V2 = K − Bz0a
µ0

cosh(η)cos(ϑ)−
By0a
µ0

sinh(η)sin(ϑ)sin(ψ)−
Bx0a
µ2

sinh(η)sin(ϑ)cos(ψ)+
C10Q

0
1(cosh(η))cos(ϑ) + C̃11sin(ϑ) (�eysin(ψ)+

�excos(ψ))Q1
1(cosh(η))

(13)
which leads to concise expressions for the deriva-
tives

∂V2
∂η = − �B0a

µ0
(�ezsinh(η)cos(ϑ)+

cosh(η)sin(ϑ)
(�eysin(ψ) + �excos(ψ)))+
C10Q

0′
1 (cosh(η))sinh(η)cos(ϑ)+

C̃11sin(ϑ) (�eysin(ψ)+
�excos(ψ))Q1′

1 (cosh(η))sinh(η)
∂V2
∂ϑ = − �B0a

µ0
(�ezcosh(η)sin(ϑ)+

sinh(η)cos(ϑ)
(�eysin(ψ) + �excos(ψ)))−
C10Q

0
1(cosh(η))sin(ϑ)+

C̃11cos(ϑ)Q1
1(cosh(η))

∂V2
∂ψ = − �B0a

µ0
sinh(η)sin(ϑ)

(�eycos(ψ) − �exsin(ψ))+
C̃11sin(ϑ)Q1

1(cosh(η))
(�eycos(ψ) − �exsin(ψ))

(14)
where�ex, �ey and �ez are the unit vectors in the co-
ordinate directions.

Still (10) is valid for spheroids whose major
semi-axis coincides with thez-axis. With a sim-
ple rotational operation finally the flux density for
a spheroid with anglesθ andφ can be obtained

Bx = B′
xcos(θ)cos(φ) −B′

ysin(φ)+
B′
zsin(θ)cos(φ)

By = B′
xcos(θ)sin(φ) +B′

ycos(φ)+
B′
zsin(θ)sin(φ)

Bz = −B′
xsin(θ) +B′

zcos(θ)
(15)



Inverse Problems, Design and Optimization Symposium
Rio de Janeiro, Brazil, 2004

TWO STAGE RECONSTRUCTION OF THE
UXO ORIENTATION

First Stage: Information from Field
Signatures

As mentioned above, the reconstruction prob-
lem consists of determining 7 parameters, namely
(x0, y0, z0) — the location of the center of the
prolate spheroid; (b, c) — the minor and the ma-
jor semi-axes of the spheroid; and (θ, φ) the angles
between the major semi-axis and thez-axis and the
x-axis respectively.

Different to [1] not only the accuracy require-
ment but also the speed requirement is important in
this work, hence the reconstruction problem will be
solved abandoning stochastic methods. This, how-
ever, bears the possibility of getting stuck in a sub-
optimal point in the parameter space, hence a good
starting point for the reconstruction is crucial.

In this section the question is going to be an-
swered whether or not some of these parameters
can be determineda priori by inspection of the
magnetic field signature at the measurement plane.

For the following investigations an earth mag-
netic field of |B| = 47.9µT , θB = 30o and
φB = 45o is assumed, which is approximately the
earth magnetic field in Central Europe.

The major semi-axis of the spheroid is 1.5 m
and the minor semi-axis is 0.2 m. The center of the
UXO is located in a depth of 2 m and the measure-
ment plane is 0.5 m above the ground.

In Fig. 2 - Fig. 4 the signatures (i. e. the mag-
netic field plot) for different UXO locations are
given.

As can be seen in Fig. 2 - Fig. 4 somea priori
information can be drawn from the magnetic field
signatures.

Especially theBz signature allows to determine
the center of the spheroid in thexy-plane with ac-
ceptable accuracy, simply by calculating the mid-
dle point between the location of the maximum and
the minimum in theBz signature.

Additionally the angleφ can be calculated from
the signature, since the angle of the directional vec-
tor from the minimum peak to the maximum peak
is approximately equal toφ, provided thatθ is nei-
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Figure 2: Prolate spheroidθ = 90o, φ = 0o: (a)
orientation of the UXO in space, (b)Bx signature
in height0.5m, (c) By signature in height0.5m,
(d)Bz signature in height0.5m

ther zero nor90o.
Furthermore one can impose a reasonable

equality constraint, namely that the fraction of the
major semi-axis and the minor semi-axis is 2.5
(which is sensible for most UXOs).

With the a priori information and the assump-
tion for the semi-axis, one ends up with 3 param-
eters to be reconstructed, namely the depthz0, the
angle between thez-axis and the major semi-axis
of the spheroidθ and the minor semi-axis of the
spheroidb.

In the following the reconstruction that is per-
formed using thea priori information from the
magnetic field signature and the assumption about
the axis of the prolate spheroid will be called
coarse reconstruction.

For practical reasons the requirements for the
course reconstruction are that it should be fast (less
than a minute on a 1GHz Pentium with 128 Mb
memory) and that the location of the UXO should
be found with an acceptable precision (± 0.5 m).
Furthermore the anglesφ andθ should be found
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Figure 3: Prolate spheroidθ = 90o, φ = 135o: (a)
orientation of the UXO in space, (b)Bx signature
in height0.5m, (c) By signature in height0.5m,
(d)Bz signature in height0.5m

with an error less than± 10o (the dimensions of
the semi-axes of the spheroid are of minor interest
at this stage). Thecoarse reconstruction leads to
the valuesxc0, yc0, zc0, bc, cc, φc andθc.

Solution of the Inverse Problem for
the Coarse Reconstruction

The inverse problem for the coarse reconstruc-
tion is formulated in a least squares sense forN
measurement points

pcopt = argmin
pc

N∑
i

(Bzi −Bz0i)
2 (16)

with
pc = (z0, θ, b)T (17)

andpcopt being the optimal value forpc.
One Gauss-Newton iteration for the stept + 1

then is

pct+1 = pct −
(
JTJ

)−1
(
JT

(
�Bz − �Bz0

))
(18)
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Figure 4: Prolate spheroidθ = 45o, φ = 135o: (a)
orientation of the UXO in space, (b)Bx signature
in height0.5m, (c) By signature in height0.5m,
(d)Bz signature in height0.5m

with �Bz0 being a vector that contains all measured
Bz values and�Bz is the vector of calculatedBz
values resulting from the spheroidal and

Ji,j =
∂Bzi

∂pcj
(19)

being one entry of the Jacobi matrix.

Second Stage: Refined Recon-
struction

The next (optional) stage of the reconstruction
is to use the results from thecoarse reconstruction
as a starting guess for the so-calledrefined recon-
struction, where all 7 parameters are reconstructed.
The refined reconstruction parametersxf0 , yf0 , zf0 ,
bf , cf , φf andθf are allowed to vary in the follow-
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ing intervals

xc0 − 0.5m ≤ xf0 ≤ xc0 + 0.5m
yc0 − 0.5m ≤ yf0 ≤ yc0 + 0.5m
zc0 − 0.5m ≤ zf0 ≤ zc0 + 0.5m
bc − 0.2m ≤ bf ≤ bc + 0.2m
cc − 0.5m ≤ cf ≤ cc + 0.5m
φc − 10o ≤ φf ≤ φc + 10o

θc − 10o ≤ θf ≤ θc + 10o

(20)

The refined reconstruction was carried out with
a constrained Quasi-Newton method with a BFGS
update for the Hessian matrix [6].

Reconstruction Results

The above mentioned procedure is applied to
identify an UXO in 2 m depth. The signal that was
used for reconstruction is thez-component of the
magnetic flux density, which was measured on a
square grid of 12 m× 12 m in 20× 20 equally
distributed points. The measurement grid is 0.5 m
above ground. It is assumed that the location of the
measurement points within the grid is known with
high accuracy.

Additionally it has to be assumed, that the soil
is not ferromagnetic.

The reconstruction was carried out applying a
Gauss-Newton method, which minimizes the dif-
ference between the magnetic flux density that re-
sults from the prolate spheroid model and the mea-
sured flux density.

For the semi-axes of the spheroid a constraint
was defined, such that the minor semi-axis is al-
ways smaller than the major semi axis.

The necessary first order derivatives have been
calculated analytically.

The results in Table 1 have been obtained af-
ter 11 Gauss-Newton iterations (19 seconds on a
1GHz Pentium PC) for thecoarse reconstruction
process and after 62 iterations (3 minutes) for the
refined reconstruction. The starting guess for the
remaining parameters for the coarse reconstruction
wasz0 = −3m, b = 0.1m andθ = 10o.

WRONG ASSUMPTION FOR THE PERME-
ABILITY OF THE BOMB AND UNCER-
TAINTY IN SENSOR LOCATION

Table 1: UXO reconstruction: true UXO dimen-
sions and location (true),coarse reconstruction
(reco1) andrefined reconstruction (reco2)

true reco1 reco2
x0 [m] -1.0000 -1.2000 -1.0219
y0 [m] -0.5000 -0.9000 -0.4909
z0 [m] -2.0000 -2.2706 -2.0118
c [m] 1.0000 0.9773 1.0117
b [m] 0.3000 0.3909 0.2970

φ [degree] 35.0000 36.8699 34.4051
θ [degree] 80.0000 85.0000 80.0974

Figure 5: coarse reconstruction: Reconstructed
spheroid (cyan) and true spheroid (red). The re-
sult has been obtained by reconstructing the depth
z0, the minor semi-axis of the spheroidb and the
angleθ
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Figure 6: refined reconstruction: Reconstructed
spheroid (cyan) and true spheroid (red). The result
has been obtained by reconstructing all 7 param-
eters. The parameters were allowed to vary only
within a small range around the values that have
been obtained with thecourse reconstruction

First we study the effect for the reconstruction
if the permeability of the spheroid in the mathemat-
ical model is different from the permeability of the
true spheroid.

It is assumed in the following reconstruction
thatµr of the spheroid is 500, whereas the perme-
ability of the true spheroid is 1000.

The reconstruction was again carried out in two
steps: a course reconstruction witha priori data
and 3 remaining parameters (reco 1) and a refined
reconstruction with 7 parameters in a limited sub-
space according to (20) (reco 2). The results of the
reconstruction withµr-uncertainty are given in Ta-
ble 2.

Table 2: Reconstruction results forµr-uncertainty
(µtruer =1000;µassumedr =500)

true reco1 reco2
x0 [m] -1.0000 -1.2000 -1.0327
y0 [m] -0.5000 -0.9000 -0.5038
z0 [m] -2.0000 -2.1604 -2.0009
c [m] 1.0000 0.9482 1.0226
b [m] 0.3000 0.3793 0.2927

φ [degree] 35.0000 36.8699 34.7013
θ [degree] 80.0000 84.5084 80.2398

For the results in Table 2 again the starting
guess wasz0 = −3m, b = 0.1m andθ = 10o;
and as starting guess for reco 2, the result of reco 1
was chosen.

The result obtained from reco 2 is in very good
agreement with the parameters of the true spheroid.
Hence a wrong assumption forµr has little effect
on the solution.

Next the effect on the reconstruction of uncer-
tainty in the locations of the magnetic field sensors
is examined.

In the following it is assumed that a sensor lo-
cation in thex-y-plane is known with an error of
± 6 cm.

Fig. 7 shows some of the true sensor locations
(red) and the locations of the sensors that are used
for the reconstruction (blue).
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1
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x [m]

y 
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]
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Figure 7: True sensor locations (red) and assumed
sensor locations for the reconstruction (blue)

Once again the starting guess wasz0 = −3m,
b = 0.1m andθ = 10o. The results of the recon-
struction are given in Table 3.

Table 3: Reconstruction results for uncertainty in
sensor location of± 6 cm

true reco1 reco2
x0 [m] -1.0000 -1.2276 -0.9556
y0 [m] -0.5000 -0.8757 -0.5239
z0 [m] -2.0000 -2.2657 -2.0280
c [m] 1.0000 0.9667 1.0078
b [m] 0.3000 0.3867 0.3342

φ [degree] 35.0000 36.5284 35.5416
θ [degree] 80.0000 85.0000 84.1482
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The results after reco 2 are in good agreement
with the parameters of the true spheroid as well,
however, it cannot be concluded that one could be
too careless what the knowledge of the sensor loca-
tions is concerned. In the following an uncertainty
of ± 20 cm in the sensor location was investigated,
leading to the results in Table 4.

Table 4: Reconstruction results for uncertainty in
sensor location of± 20 cm

true reco1
x0 [m] -1.0000 -1.2312
y0 [m] -0.5000 -0.7787
z0 [m] -2.0000 -3.4526
c [m] 1.0000 1.2500
b [m] 0.3000 0.5000

φ [degree] 35.0000 35.3770
θ [degree] 85.0000 85.0000

The results in Table 4 show that after reco 1
the results differ quite significantly from the true
parameters, especiallyz0 = −3.4526m is com-
pletely out of scope, thus to perform reco 2 is use-
less in this case.

CONCLUSION

It has been shown in this section that a ferro-
magnetic UXO can be detected with high accu-
racy. Investigations have shown that the recon-
struction results are quite insensitive to the assump-
tion of the relative permeability of the spheroid in
the mathematical model. However one has to take
care what the knowledge of the sensor locations is
concerned. It has been demonstrated that accept-
able reconstruction results can be obtained with an
uncertainty in the sensor locations of± 6 cm; how-
ever reconstruction fails with an uncertainty in sen-
sor locations of± 20 cm, an error, which may ap-
pear very large but if one single mobile sensor is
used and the location of the sensor is determined
by GPS, this error is quite low.

Once again the main problem for magnetome-
ter based UXO detection and reconstruction has to
be mentioned: A non-ferromagnetic UXO is com-
pletely invisible to the reconstruction environment.
In this case it is good practice to carry out UXO
detection with other methods like GPR or EIM.
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